Yeast Coq5 C-methyltransferase is required for stability of other polypeptides involved in coenzyme Q biosynthesis.

نویسندگان

  • Suzie W Baba
  • Grigory I Belogrudov
  • Justine C Lee
  • Peter T Lee
  • Jeff Strahan
  • Jennifer N Shepherd
  • Catherine F Clarke
چکیده

Coenzyme Q (Q) functions in the electron transport chain of both prokaryotes and eukaryotes. The biosynthesis of Q requires a number of steps involving at least eight Coq polypeptides. Coq5p is required for the C-methyltransferase step in Q biosynthesis. In this study we demonstrate that Coq5p is peripherally associated with the inner mitochondrial membrane on the matrix side. Phenotypic characterization of a collection of coq5 mutant yeast strains indicates that while each of the coq5 mutant strains are rescued by the Saccharomyces cerevisiae COQ5 gene, only the coq5-2 and coq5-5 mutants are rescued by expression of Escherichia coli ubiE, a homolog of COQ5. The coq5-2 and coq5-5 mutants contain mutations within or adjacent to conserved methyltransferase motifs that would be expected to disrupt the catalysis of C-methylation. The steady state levels of the Coq5-2 and Coq5-5 mutant polypeptides are not decreased relative to wild type Coq5p. Two other polypeptides required for Q biosynthesis, Coq3p and Coq4p, are detected in the wild type parent and in the coq5-2 and coq5-5 mutants, but are not detected in the coq5-null mutant, or in the coq5-4 or coq5-3 mutants. The effect of the coq5-4 mutation is similar to a null, since it results in a stop codon at position 93. However, the coq5-3 mutation (G304D) is located just four amino acids away from the C terminus. While C-methyltransferase activity is detectable in mitochondria isolated from this mutant, the steady state level of Coq5p is dramatically decreased. These studies show that at least two functions can be attributed to Coq5p; first, it is required to catalyze the C-methyltransferase step in Q biosynthesis and second, it is involved in stabilizing the Coq3 and Coq4 polypeptides required for Q biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the COQ5 gene from Saccharomyces cerevisiae. Evidence for a C-methyltransferase in ubiquinone biosynthesis.

Ubiquinone (coenzyme Q or Q) is a lipophilic metabolite that functions in the electron transport chain in the plasma membrane of prokaryotes and in the inner mitochondrial membrane of eukaryotes. Q-deficient mutants of Saccharomyces cerevisiae fall into eight complementation groups (coq1-coq8). Yeast mutants from the coq5 complementation group lack Q and as a result are respiration-defective an...

متن کامل

Genetic evidence for a multi-subunit complex in the O-methyltransferase steps of coenzyme Q biosynthesis.

Coq3 O-methyltransferase carries out both O-methylation steps in coenzyme Q (ubiquinone) biosynthesis. The degree to which Coq3 O-methyltransferase activity and expression are dependent on the other seven COQ gene products has been investigated. A panel of yeast mutant strains harboring null mutations in each of the genes required for coenzyme Q biosynthesis (COQ1-COQ8) have been prepared. Mito...

متن کامل

Isolation and functional expression of human COQ3, a gene encoding a methyltransferase required for ubiquinone biosynthesis.

The COQ3 gene in Saccharomyces cerevisiae encodes an O-methyltransferase required for two steps in the biosynthetic pathway of ubiquinone (coenzyme Q, or Q). This enzyme methylates an early Q intermediate, 3,4-dihydroxy-5-polyprenylbenzoic acid, as well as the final intermediate in the pathway, converting demethyl-Q to Q. This enzyme is also capable of methylating the distinct prokaryotic early...

متن کامل

Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis.

Ubiquinone (coenzyme Q or Q) is a lipid that functions in the electron transport chain in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes. Q-deficient mutants of Saccharomyces cerevisiae harbor defects in one of eight COQ genes (coq1-coq8) and are unable to grow on nonfermentable carbon sources. The biosynthesis of Q involves two separate O-methylation step...

متن کامل

Human COQ9 Rescues a coq9 Yeast Mutant by Enhancing Coenzyme Q Biosynthesis from 4-Hydroxybenzoic Acid and Stabilizing the CoQ-Synthome

Coq9 is required for the stability of a mitochondrial multi-subunit complex, termed the CoQ-synthome, and the deamination step of Q intermediates that derive from para-aminobenzoic acid (pABA) in yeast. In human, mutations in the COQ9 gene cause neonatal-onset primary Q10 deficiency. In this study, we determined whether expression of human COQ9 could complement yeast coq9 point or null mutants....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 11  شماره 

صفحات  -

تاریخ انتشار 2004